

The type 1 diabetes gene *IFIH1* regulates anti-viral responses differentially in pancreatic alpha and beta cells

Sophia Forsskåhl, Hazem Ibrahim, Jouni Kvist, Solja Eurola, Timo Otonkoski and Vikash Chandra*

Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

INTRODUCTION

Fig. 1. Pancreatic lineage differentiation Fig. 2. Treatment with a dsRNA viral mimetic (poly I:C) revealed MDA5 dependent STAT1-mediated induction of *CXCL10* in the SC-islets. of WT and *IFIH1* KO clones

RESULTS

- Recent evidence suggests that direct enteroviral infection of islet cells could be an important factor in T1D pathogenesis.
- Melanoma differentiation associated protein 5 (MDA5), encoded by IFIH1, is responsible for the detection of cytosolic viral dsRNA to initiate an antiviral response.
- Loss-of-function variants in *IFIH1* confer protection against T1D while gain-of-function have been linked with increased risk.

We have generated two human iPSC lines, one with an *IFIH1*-knock-out and one with an *IFIH1* gain-of-function mutation (E444G) KI, and differentiated them to the pancreatic endocrine lineage to generate stem cell derived islets (SC-islets).

Expression pattern of *IFIH1* **in SC-islets**

(A) Single cell RNAseq of SCislets showed enrichment of *IFIH1* in the alpha cell

Analysis of differentiation markers in pancreatic progenitor using A) immunocytochemical analysis and B) flow cytometry. Analysis of insulin and glucagon expression in mature SC-islets using **C**) immunohistochemistry and D) flow cytometry. E) Functional analysis of SC-islets using static GSIS. Analysis of PolyI:C treated SC-islets A) mRNA expression B) Quantification of MHC-I+ and Insulin+ cells using flow cytometry **C**) Western blot

Fig 3. scRNAseq analysis of viral-mimetic (poly I:C) treated WT and *IFIH1^{KO}* SC-islets

population compared to beta cells, and

(B) throughout SC-islet maturation.

CONCLUSION

- Our results suggest that absence of MDA5 does not compromise the generation of SC-islets or their glucose responsiveness.
- Stimulation of the KO and WT SC-islets with differential PolyI:C MDA5 demonstrated mediated inflammatory responses.
- Results from the KI (E444G) model suggest a spontaneous hyper IFN signalling which was ameliorated by TYK2 inhibition.
- scRNAseq indicates decrease IFN signalling in IFIH1-KO alpha and beta-cells while eukaryotic translation elongation pathways enriched in the alpha-cells.
- Our model will make it possible to further elucidate the differences in the antiviral responses between alpha and beta cells.

A. An overview of the IFIH1 gene and gain-offunction mutation KI (E444G).

B. Relative transcripts levels of *IFIH1*, *IFNb* and CXCL10 in the KI at stage 0 (hiPSCS) and in S2-Definitive endoderm stage +/- TYK2i.

C. Immunocytochemistry of S4 (Panc. Prog.) KI cells for the expression of MHC-I when TYK2i was temporarily withdrawn for 24h.

D. Western blot analysis for the expression of MDA5 in the KI cells at S2 of pancreatic differentiation.

A. An overview of the scRNAseq experiment plan.

 B. Different clusters identified in the Poly I:C treated SC-islets with scRNAseq analysis.
C. UMAP images showing the expression pattern of *HLA-B* and *CXCL10* in the different clusters of SC-islets. **D.** Reactome based pathways enrichment analysis in Alpha, (**E**) Beta and (**F**) Delta cells population of *IFIH1^{KO} vs* WT SC-islets in response to viral mimetic Poly I:C treatment .

DIABETESTUTKIMUSSÄÄTIÖ STIFTELSEN FÖR DIABETESFORSKNING

